don’t make me clamp you, part 3

Oh, the fun.  After a few fails, I managed to print out several C-shaped clamps in carbon fiber—infused PLA, finally getting the temperature right.  I then spent several more hours in Autodesk Fusion 360 to further tweak/finalize the bottom of the chassis for the Raspberry Pi 3 supercomputer and sent that off for a 56-hour print job.  Whoa.


Four of these clamps then were employed during last night’s printout while it was still going.


Unfortunately, the pause feature that I’d asked for in the slicing software went rogue upon resume and tried to bury the extruder into the plastic, forcing me to abort at 4am this morning.  <_<

At least there’s much less part curling at the base versus last time. So I think I’ll redesign the clamps to have an even lower top profile and clamp right after the first four layers of the raft are down.


don’t make me clamp you… (part 2)

You wouldn’t believe the difficulty I just had getting Autodesk Fusion 360 to do what I’d thought would be trivial: I wanted to cut down an existing part from Thingiverse to meet my needs.

Thingiverse ≠ OpenSource

The first thing I learned yesterday from this is that—even though Thingiverse seems like a wonderfully collaborative place—it isn’t actually open-source. If this were open-source, then in addition to the mesh (STL) files that are shared, each author would also include their project file as well (DWG, for example).

Don’t get me wrong, Thingiverse allows people to share their work. And yet, it isn’t the same as github which allows someone to take 100% of what you worked on, tweak it and then share that as well. It’s this iterative modification that makes open-source so powerful. And the reason behind that is that each new person doesn’t have to start from scratch.

CAD Project File

A typical computer-aided design file will include a variety of information. Most, though, are built around the concept of an initial sketch in two dimensions with a variety of measured constraints, for example. One then brings that 2D sketch into the third dimension and suddenly you have a part.

If you’d like to then edit the sketch or change the height of the sketch in that third dimension, you’d need to have that project file. (Thingiverse does not share project files.)

Mesh File

At the end of a design session, it would be necessary then to export that part into a 3D model which is usually a collection of points and triangular faces. The sum of these describes a solid in 3D space. (These STL files are shared on Thingiverse.)

Toolpaths File

Once you’ve exported your own design to an STL file (or you’ve downloaded one from someplace like Thingiverse), the file is taken into software like Cura if you’re trying to print to a 3D printer. This is known as “slicing” since it’s Cura’s job to know your printer well enough that it may slice your part from the bottom, up. Each layer then is converted into a number of instructions called G-code which tells the printer exactly what to do at every step of the way. (Thingiverse does not share these files either.)

Autodesk Wants You to Design in Autodesk

It was clear from my initial interaction with Autodesk’s support that they don’t want you to work using other software. They want you to start over and redesign your part in their software. Given that they charge $40/month to use the software, it’s easy to see why.

They actually do support the conversion of a mesh file into your project file in such a way that you can cut it, for example. They just hide the feature as an Easter Egg; only after turning off project journaling (Time Line) can you see the Mesh-to-BRep option. Granted, the program became painfully slow using this feature since it was grappling with about 50,000 triangular faces. Eventually, though, it processed the mesh file and I was able to apply the cutting action to remove some of the clamp from Thingiverse.

Progress So Far

Knowing that I could further modify the C part of the clamp should I need to, I then set the first of two prints into motion.

With the standard white PLA filament in the printer, I was able to print this in just over twelve hours last night. It’s a collection of eight screws plus their respective protector caps for the ends of those ball points. And tonight, I’ll print the C-shaped parts in black carbon fiber PLA for its added strength. (I’ll need to break them away from the adhesion raft, of course.)


In case you’re wondering, I had to laboriously place each of the sixteen individual parts into Cura’s workplace, carefully including enough space between them. The tighter you bunch them, the less movement the printer will have to do and the faster it will print. Get them too close and the extruder might bump into one of the other parts or perhaps merge two parts together.

As you can see from the slight bit of raft curl on the right side in the second photo, these clamps in theory will do a nice job of holding the raft down into the bed for the first inch or so of the part’s printing. In some cases, they should save what would otherwise be a failed printout.