da plane

Obviously, I watched too much television growing up. Every week on Fantasy Island, Hervé Villachaize’s character would point to the sky and make this exclamation.

da-plane

In a 3D printer, it’s really important to start printing on a known, flat plane. And yet, many print beds aren’t made of something rigid like glass so bigger parts end up shaped like the print bed itself. Even small deviations can mess up a print. It’s a problem to be solved, actually.

OctoPrint

The software that’s running on my Robo C2 printer is a fork of the popular OctoPrint open-source software. What’s cool about this software is that it will allow you to write plugins to adjust the way it works.

GCODE

The language the printer listens to during the print job is called GCODE. Think of it as a list of common instructions that almost all 3D printers use now.

Autoleveling

One of the GCODE commands in question is G29 and this tells the printer to run through an autoleveling routine. In some cases, the printer’s extruder will actually touch the print bed in several locations. In others, the extruder assembly will use a light plus a photoresistor to hover above the bed and to gauge its height above it. Using either method, the printer can make a reasonable “map” of the print bed and mathematically create a virtual plane to represent it. If the print bed is a little lower on one side, this routine should allow the printer to compensate for that.

Only…, it doesn’t really work that great, to be honest. Someone deserves a round of applause for trying to fix the problem but honestly, a manual approach is possibly the better way to go here.

Although these printers have a built-in autoleveling feature, manually leveling the print bed is preferred by those who are more advanced at 3D printing.

The Problem

I’m currently now working to manually adjust my print bed so that it is perfectly level and an exact height from the extruder. In fact, I have two replaceable print beds for the same printer so both of them need to be perfectly level and exactly the same height all around. To complicate matters, I anticipate designing and creating a third print bed for this which is heated. And that one should also be perfectly level and the same height as the others. The final goal will be to easily and quickly swap print beds without the task of fussing with any settings.

So now, having created a number of GCODE files over the last four months, I really don’t feel like editing them to remove that unnecessary G29 command. Once you’ve manually leveled everything, an autolevel routine is not only overkill but it can cause problems to the print quality. I needed a way of programmatically switching off the command when seen.

The Solution

I’ve created an OctoPrint plugin which helps to solve this problem. Assuming that I no longer need autoleveling at the start of each job, the plugin tells the printer basically to ignore any G29 commands. I now don’t have to edit countless GCODE files or worry if someone sends me a file—the printer will dutifully ignore this command.

Github:  Toggle Autolevel plugin

 

Advertisements

the matrix linode’d

Today’s review is about a pretty decent hosting company called Linode. Here’s the three-day timeline from idea to implementation:

  1. Thursday: decided to create a new info website about 3D printing, bought the domain name on GoDaddy and waited for the changes to take effect at midnight
  2. Thursday: created a Github repository to store the source for the website since I’m open-source like that
  3. Thursday: created an account on Linode, purchasing a “linode” for that
  4. Thursday: designed/created the initial local/development website layout/framework, collected images and content
  5. Friday: created (provisioned) the basic linode (virtual machine) for the website on production, provisioned a virtual drive, deployed Ubuntu 16.04LTS onto that, booted and remoted into that, ran updates, installed the framework, added the website, setup security and the firewall
  6. Friday: adjusted the DNS at GoDaddy to point to the new server, added more content
  7. Saturday: launched the website on Linode with the initial version
  8. Saturday: tweaked the settings to make the Node.js—based website start on bootup
  9. Saturday: added more content to the website

site

Not bad for an open-sourced 10-page (44 files) responsive website, if I do say so myself.

Please note that when I say “hosting company”, I really mean a “virtual server provider” so this is more like Amazon EC2 as a service offering. I didn’t just rent website space (like on Wix.com or WordPress.com), I rented an entire virtual server, if you will.

Comparison of virtual server versus website space

There are some advantages/disadvantages of renting a virtual server over just some website slot on a server somewhere:

Pros:

  • In theory, you could run several websites from a virtual server
  • You can run services in the background (like Node.js) and manage them
  • You can run multiple threads on the same server, like helper routines which do something other than serving up pages
  • You’re not limited to the set of templates that are available from Wix.com, for example
  • Your website runs separately from other websites
  • You get an IP address which is only used for your website

Cons:

  • You have to setup security yourself since you’re responsible for the entire server
  • The learning curve is steeper
  • You have to know I.T. things like setting up servers and installing software

Framework/software

Here’s a list of what I used for this website:

  • Node.js: Probably the most famous event-driven JavaScript runtime engine out there
  • Express: A minimalistic Node.js framework for separating code from content on a website
  • Bootstrap.css: A responsive stylesheet and component library for styling a website
  • PM2: A handy process manager for Node-based applications on a server.  After pulling new code, I might run the command pm2 restart AppName to restart the service

Documentation

Kudos to Linode for providing a detailed Getting Started guide along with several tutorial videos on the subject.

And further, a note of thanks to PM2 which seems to satisfy the requirements of bringing up and managing a Node.js application as a service within a production environment and their ample documentation.

Suitability

Is Linode well-suited for most website designers/developers? Probably not. On an I.T. complexity scale from 1 to 10 potatoes, I’d say they’re probably seven potatoes, perhaps. In this case, you’d have to be comfortable doing the following:

  • Using a web-based console to allocate and bring up/down a virtual server
  • Using ssh to remote into your virtual server
  • Navigating within a command line interface on a Linux computer or similar
  • Using ssh-keygen to generate a keypair
  • Using apt-get to update things
  • Editing files using nano
  • Managing services, reading log files
  • Remotely rebooting your virtual server
  • Setting up a firewall, testing and managing same
  • Applying code using git
  • Testing a website to verify that there are no 404 (file not found) type of errors, for example
  • And obviously, creating/designing a website in the first place and using a repository like Github for storing those files

That said, it was a perfect fit for me since I can do those things. In fact, the Linode-related part of this took no more than two hours since this is the first time I’ve used their interface. My next one should go much faster.

Observations

I will say that I’m impressed. Unlike Amazon AWS, Microsoft and Google, the people at Linode haven’t created an interface that’s overly complicated. It seems to work simply and to do the things you need to do and those are: 1) buy a virtual server, 2) deploy something onto it, 3) turn it on and 4) remote into it. I don’t think the “big three” have figured this out yet; their interfaces and the assumed workflow requires too much research, in my humble opinion.

Additionally, the PM2 software does a great job of working with the git-based code distribution model, allowing you to restart the Node.js app when it’s required and to start up automatically each reboot. There’s an easy-to-remember command interface like pm2 show AppName which tells you what you usually want to know.

At a cost of $5/month, it compares favorably to most of the well-known hosting providers out there. The basic linode will likely satisfy the requirements of the average Node.js application up to a reasonable level of simultaneous users, I’d suggest.

price

j.a.r.v.i.s.

Imagine being able to have a conversation with your 3D printer much in the same way that the Tony Stark character of Iron Man did with his butler-esque virtual companion J.A.R.V.I.S., as voiced by the very talented Paul Bettany.  How cool would that be?

jarvis

So I thought I’d work on an upgrade to my Robo C2 printer to add this capability.

Amazon Echo (Alexa)

Fortunately, Amazon has a product called Echo with an underlying personality & service named Alexa. Since they’ve made the source code and service available to developers, I’ll be using this to get started. For the commercial product, you’d say “Alexa…, what’s the local weather?”, perhaps and she might “read” a brief report for you. And by “read”, I mean:  “a text version of the weather report queried response would be rendered into sound using a female’s voice and played on a speaker”. (We love to anthropomorphize these things now that computers are getting so smart.)

Raspberry Pi

The Robo C2 printer has a Raspberry Pi 3 inside and I’ll be incorporating this into the project; I’m fairly familiar with how this computer works.

Since the price of the official Amazon Echo is about $100, this strikes me as being too expensive since all I really need is a single board computer, a microphone, a storage card and a battery. The Raspberry Pi Zero W fits that description and weighs in at a mere $10.  Technically, I’ll also need a speaker but since I’ve just upgraded the Robo C2 with sound events then I intend to push my generic Echo’s sounds over to the printer to play them there. This will help in the illusion that I’m talking to someone/something “over there”.

Wake Word

The Echo technology out-of-the-box recognizes the spoken word “Alexa” so that it might then attempt to turn your subsequent spoken commands into something recognizable, a “skill”. I’ll be updating it to recognize the spoken word “Jarvis” instead.

Custom Skills

Beyond the included skills, the service allows new user-defined skills to be created and then they’re part of Alexa’s talents, if you will. I shall be creating custom skills so that I might then do a number of tasks with the printer, hopefully to include sending a new job to print. It would also be good to know the status of an existing job without necessarily reading any of the available displays/consoles for this information.

From what I understand, these new skills are a collection of intents and utterances with optional slots as variables.

OctoPrint

The underlying printing software behind-the-scenes on this printer is called OctoPrint. It’s suggested that it’s already compatible with Alexa so we’ll see if that’s accurate.

Size

It should be rather small and handheld. The board itself is about the length of three quarters. I have two different microphones for this—I’ll try to use the smaller of the two. Initially, I’ll use a barrel type of USB charger but I’ll then knock that down to a smaller style when that’s working. I’ll likely solder the accessories if they seem to be happy. And then finally when I’ve settled on the accessories and such, I’ll design and print an enclosure for it. I may or may not include a wake-up button.

PiZero

Custom Voice

I would like to replace Alexa’s voice personality with sound events from the J.A.R.V.I.S. movie character. I’ll see what it will take to make this happen. By keeping his responses to a few generic ones, I might just replace the outbound render-to-text routines so that they just pull from the stock responses as recorded and stored.

Progress

  • The sound event upgrade is now on the printer (imagine a Robo C2 printer making R2D2-like sounds to let you know when something has occurred)
  • I have all the parts I need for Jarvis
  • I’ve created a developer’s account on Amazon and have created my Alexa service for Jarvis
  • I have the Raspberry Pi Zero W computer’s operating system installed
  • The AlexaPi source code is installed and the service is running
  • The microphone appears to be working as expected
  • I need to read through the various tweaks required since I’m running on a Raspi Zero instead of a different version
  • Re-purpose the onboard LED on the Pi to work for the voice recognition notification
  • I need to install the new wake word for “Jarvis” instead of “Alexa”
  • I need to create one or more skills for things I need the printer to do like report status, turn off/on the webcam or to start/stop a job
  • Record and store patterned responses from the Iron Man series of movies to be played on the Raspi 3

 

don’t make me clamp you… (part 2)

You wouldn’t believe the difficulty I just had getting Autodesk Fusion 360 to do what I’d thought would be trivial: I wanted to cut down an existing part from Thingiverse to meet my needs.

Thingiverse ≠ OpenSource

The first thing I learned yesterday from this is that—even though Thingiverse seems like a wonderfully collaborative place—it isn’t actually open-source. If this were open-source, then in addition to the mesh (STL) files that are shared, each author would also include their project file as well (DWG, for example).

Don’t get me wrong, Thingiverse allows people to share their work. And yet, it isn’t the same as github which allows someone to take 100% of what you worked on, tweak it and then share that as well. It’s this iterative modification that makes open-source so powerful. And the reason behind that is that each new person doesn’t have to start from scratch.

CAD Project File

A typical computer-aided design file will include a variety of information. Most, though, are built around the concept of an initial sketch in two dimensions with a variety of measured constraints, for example. One then brings that 2D sketch into the third dimension and suddenly you have a part.

If you’d like to then edit the sketch or change the height of the sketch in that third dimension, you’d need to have that project file. (Thingiverse does not share project files.)

Mesh File

At the end of a design session, it would be necessary then to export that part into a 3D model which is usually a collection of points and triangular faces. The sum of these describes a solid in 3D space. (These STL files are shared on Thingiverse.)

Toolpaths File

Once you’ve exported your own design to an STL file (or you’ve downloaded one from someplace like Thingiverse), the file is taken into software like Cura if you’re trying to print to a 3D printer. This is known as “slicing” since it’s Cura’s job to know your printer well enough that it may slice your part from the bottom, up. Each layer then is converted into a number of instructions called G-code which tells the printer exactly what to do at every step of the way. (Thingiverse does not share these files either.)

Autodesk Wants You to Design in Autodesk

It was clear from my initial interaction with Autodesk’s support that they don’t want you to work using other software. They want you to start over and redesign your part in their software. Given that they charge $40/month to use the software, it’s easy to see why.

They actually do support the conversion of a mesh file into your project file in such a way that you can cut it, for example. They just hide the feature as an Easter Egg; only after turning off project journaling (Time Line) can you see the Mesh-to-BRep option. Granted, the program became painfully slow using this feature since it was grappling with about 50,000 triangular faces. Eventually, though, it processed the mesh file and I was able to apply the cutting action to remove some of the clamp from Thingiverse.

Progress So Far

Knowing that I could further modify the C part of the clamp should I need to, I then set the first of two prints into motion.

With the standard white PLA filament in the printer, I was able to print this in just over twelve hours last night. It’s a collection of eight screws plus their respective protector caps for the ends of those ball points. And tonight, I’ll print the C-shaped parts in black carbon fiber PLA for its added strength. (I’ll need to break them away from the adhesion raft, of course.)

IMG_0123IMG_0124

In case you’re wondering, I had to laboriously place each of the sixteen individual parts into Cura’s workplace, carefully including enough space between them. The tighter you bunch them, the less movement the printer will have to do and the faster it will print. Get them too close and the extruder might bump into one of the other parts or perhaps merge two parts together.

As you can see from the slight bit of raft curl on the right side in the second photo, these clamps in theory will do a nice job of holding the raft down into the bed for the first inch or so of the part’s printing. In some cases, they should save what would otherwise be a failed printout.

keeping your pi cool

An average computer’s operating system maintains some logistics about the cpu, like its input voltage, temperature and the like. The Raspberry Pi single board computer is no exception and will even scale back its speed if it determines that its internal temperature is getting too high. That’s a good thing but another approach is to proactively cool the cpu with a fan when it’s approaching that threshhold.

pi-temp.png

Since I’m creating a cube-like chassis to hold four of these Raspberry Pi 3 computers, I’ll soon need this functionality. So I’ve just created a new repository with JavaScript code to return the cpu’s temperature in fahrenheit/celsius as a string or a number. One could then programmatically turn on/off a fan using the GPIO pins using this information.

Here’s that repository:  raspi-temp

3d cover for the pi noir camera

Using the (included) industrial-grade Autodesk Fusion 360 software, I was able to design a part for my Robo C2 printer. It’s a cover and mount for the Raspberry Pi NoIR v2 camera (8MP resolution @ $27). I picked up several cheap suction cups (@ $0.99) from Ace Hardware yesterday and used a digital caliper to carefully measure the distances all around. I’ll sand it a little to make it smooth; the photos below is what it looks like after removing the raft and supports (throw-away extras to make everything print correctly). The jaggies inside the suction cup slot I’ll leave since they’ll grip tightly. I’ll likely also keep some of the jaggies in the fitting between lid and base for the same reason.

I’ll still need to receive the longer cable from Adafruit for this to work so I haven’t snapped down the parts firmly yet. In the meantime, I might create a ribbon clip with a second suction cup (editing the money clip from an earlier post).

If you’d like the STL files for the part now, let me know and I can shoot you the URL for those but I’ll eventually write up a step-by-step tutorial on the full upgrade to adding the video feed capability.

IMG_0116IMG_0117IMG_0118IMG_0119IMG_0120IMG_0121IMG_0122

100posts

a robot which builds robots

I suppose the problem with buying a 3D plastic printer is that it makes the owner imagine all sorts of modifications to that very same printer, especially so when it’s largely open-sourced in the first place.

robo

I must admit that owning this Robo C2 printer has been a blast. I’m now past the let’s print some demos phase to the let’s print our own designs next step. And part of that design process is envisioning a better printer from this one. And what better way to modify it than printing some 3D parts, right?

So, here’s a list of some of the current things I’m doing with it.

Sound Events

It’s a wonderful printer and often, just because of the sounds you get from its collection of servo/stepper motors, it vaguely sounds a bit like R2D2, the cute robot of Star Wars fame. I’m working up a modification to add sound events from a variety of Star Wars WAV files related to R2D2.

As themes go, the movie Iron Man includes an AI character named J.A.R.V.I.S. (as voiced by Paul Bethany) who had some fun dialog with the Tony Stark character (as played by Robert Downing, Jr.) I’ve often thought that it would be sweet to add a sound event theme set based around Paul Bethany’s voicing of J.A.R.V.I.S. as well.

Video Feed and Time-Lapse Photography

I’ve just picked up a Pi NiOR camera which I’ll be adding to the printer. Next, I’ll need a longer ribbon cable, some suction cups and a designed/printed part to hold the camera itself inside the chassis.

Given the resolution of the camera, I’ll likely need to upgrade the microSD card inside to accommodate the files from the streaming activities.

Enhanced Spool Feeder

The out-of-box spool feeder seems a bit minimalistic to me. I’d like to upgrade that with a feeder which allows the spool to spin more freely. I imagine that the part needs to be more rounded at the top.

Heated Bed

The Robo C2 doesn’t include a heated bed in its design like some of its more-expensive Robo alternatives. So I’d like to machine an aluminum bed with a heating element and add this to the system.

Side-to-side Conveyor Bed

The maximum build size for the Robo C2 is a mere 5″x5″ square at the base so that’s a bit restrictive. There are techniques for joining a series of smaller parts (say, to make a sword) but I’m guessing that a possible approach is to remove the two blue side windows and rig up a conveyor system which is accurately positioned left/right as required. In this way, a very long part could be printed.

Remote Control via Joystick

I’ve purchased a Raspberry Pi Sense Hat which includes a small joystick control. I think I’d like to write something so that, using remote GPIO, I could then control the stepper motors of the printer indirectly via wi-fi.

OctoPrint Plugins

The underlying web server which runs on the printer is called OctoPrint and since it’s open-source, there are a variety of plugins for this already. I think I’d be interested in writing some plugins, especially so that someone may pause jobs in the middle so that internal components may then be assembled inside.

I’ll likely add some SMS notifications so that I can remotely know how a print job is going.

Voice Control

I also like the idea of adding voice control to the printer. How awesome would it be to just tell the printer to do something?

So basically, since the Amazon Alexa code is completely available and can be setup on a Raspberry Pi 3 computer, I can imagine then interacting with this piece (as installed on a Raspberry Pi) and having it direct activities on the printer itself.

traveling at the speed of open-source

pull request:  An external-repository modification to someone else’s code which you’d like them to adopt into the master copy of the original repository, specifically the notification request to ask for this.

It’s funny, I put in a pull request in March of this year for a timezone calculation bug which I’d discovered somewhere out there in someone else’s code.  I guess I was trying to be a good net citizen and giving back to the community.  I’d forgotten completely about it until now.  The original author merged my commit into his code yesterday and blessed it, basically.  This would actually be my very first pull request in the world of open source so I suppose that’s special in some way.

In this particular case, it took the author almost three months to see the request and get around to responding to it.  Granted, few of us would be paid to maintain our open-source repositories so they’re usually just considered hobbies for most of us, something we do in our spare time.

As a coder with many decades of experience, this pacing is a bit odd to me.  (As in, “wow, three months to bless a quick-and-dirty code fix”.)

I’m not complaining…  Okay, maybe I’m complaining.  Maybe I was just a bit naive to the average amount of effort people are putting into this.

The entire collective force of open-source is something to behold.  Almost every day some huge effort is being launched and thousands—even millions—of downloads occur from these repositories.  But what happens to the original codebase when the author gets side-tracked with their next great idea?

But what happens to the original codebase when the author gets side-tracked with their next great idea?

The New, New Thing

All this reminds me of the biographical book “The New, New Thing” about a serial-entrepreneur, Jim Clark (of Netscape fame).  The biography doesn’t really paint a pretty picture of the billionaire, instead suggesting that he was perhaps suffering from Attention Deficit Hyperactivity Disorder (ADD) or possibly Hypomania.  He couldn’t focus on a project after the second year, opting to push the work onto others and move to the next project.

I guess I have to ask what part this plays in the world of open-source software.  As an inventive person, I stare at my To-Do list of project ideas and realize that it could be argued that this is some mark of my own internal restlessness.  Could I be content working on one project for year after year?

I’m a former CEO and at one time I did run a software development firm for nine years.  Fortunately, though, I had project after project then to develop so that kept things lively. I’m impressed by those who literally spent most of their lifetime devoted to a single project.

A Lifetime of Service

Dr. Royal Rife comes to mind as one of these people.  He was curing cancer and a variety of diseases back in the 1930 decade but he spent much of his life before this inventing the microscopes and medical device equipment which he would use in the culmination of his life’s achievement.  His original home site is now the location of one of the Scripps hospitals here in San Diego but seemingly nobody knows his story.  He spent a lifetime curing cancer and he isn’t famous for it.

I guess we as a society aren’t really conditioned to reward and remember someone who did one thing very well.  To be famous or respected now, presumably you have to produce project after project, never satisfied with the maintenance of same, always chasing the next big thing.

If You Build It, Own It

I guess my word of caution in the world of open-source then is to own what you’ve built.  Try to revisit it from time to time, like you might keep a plant alive by watering it once in a while.  Do new things, of course.  But don’t forget that your last thing could actually be ticket to your success.

taking the bite out of stamps.com

Stamps.com offers an online service in which you can digitally apply postage to an envelope.  They even include a nifty/free digital scale to attach to your computer.

StampsDotComScale

The problem of course is that in order to make back the cost of that “free” device, Stamps.com wants to charge you on a monthly basis to use this service and most people decide that it’s not worth those charges.  I often see these sitting idly on someone’s desk and it’s only useful for measuring the weight of something.  Without their service, you’d then need to manually lookup the postage and then count the right number and types of stamps.

I’ve written a Windows program which will do all that for you, weighing the envelope, calculating the postage and letting you know how many stamps of which kind to put on it.

Postage

Here is the new repository on github.com.  You can run it directly or build the program yourself if you have a copy of  Visual Studio, to include the free Community version.  Your computer will need the .NET Framework 4.5.2, for what it’s worth.

the robo 3d c2 printer

For months now, I’ve been wanting a 3D printer to create plastic parts and I’m guessing that I just made the best choice by buying the Robo C2.

robo

First Impressions

First of all, it’s an attractive printer in the same way that EVE (from the WALL•E cartoon) was cute.  Perhaps you can see the resemblance?

eve

Second—and you guys should know by now how I love them—this printer is driven by a Raspberry Pi 3 computer inside!  I hope to clone the microSD card in that computer and go to school on their efforts to hack an even better printer out of it.

Third, the product is open-sourced and crowd-funded.

Fourth, they’re a local company.  Their office is maybe a 20-minute drive from where I live in San Diego.  Given that most people would have to purchase this online and have it shipped, they wouldn’t get to see it in action like I just did.

Fifth, it includes an iOS app which allows you to control this and any other Octoprint-enabled printer.

Sixth, at 20 microns, it looks to have the best resolution of any of the printers I saw at Frye’s Electronics and most of those had a price tag above $1400 to reach the 50 micron resolution level.

Finally, it looks like it comes with a one-year license for Autodesk Fusion 360 which appears to be a very nice program for designing.

Research and Past Experience

I spent a fair amount of time before purchasing this by researching 3D printing, the types of plastics, the pitfalls to overcome, etc.

This particular printer doesn’t have a heated bed (the place where the project is made) so it may not do a great job with ABS plastic without a lot of trickery.  The standard voodoo that is necessary is to get inventive with the bed covering so that the project adheres nicely, doesn’t skip around and further, doesn’t warp due to uneven heating.

So for an unheated bed, the PLA type of plastic is the suggestion here and I’ve purchased an additional two rolls of the stuff to get things started.

Interestingly-enough, a few years ago I worked in a large plastic manufacturing plant so I have a little experience making plastic of the rotomolded variety.

caveman

In this industrial-sized version, colorized plastic powder is measured and put into aluminum molds on a steel frame wheel.  And this wheel then is inserted into a very large 700°F oven.

But for the consumer variety, you spend most of your time in a computer-aided design program, send a job to the printer and then wait hours (usually) to see how it turned out.  This ought to be interesting.

Projects

I have a few projects in mind for this.  I snagged a Robo Drone Kit while I was at Frye’s to give me a project which should produce some reasonable results.

dronekit

I hope to design and print an enclosure for the e=mc2 project from earlier.  Although it’s difficult, I hope to make this a clear enclosure ultimately.

I’d like to work up a design for a heated bed for the Robo C2 since it sounds like this would make ABS-related print jobs more successful.  I think I’d also like to test new bed materials since the field of 3D printing is still new and inventiveness is required here.

Given that the Robo C2 has a Raspberry Pi computer inside with OctoPi software running on it, I should be able to modify the design, add things onto the printer and do notifications, for example.  I could add an internal webcam to it, for example.

And then finally, I think I’ll spend some time on post-print finishing techniques to see what I can do in this area.

Results

Here’s the first printout from the Robo C2 after some upgrades and dialing in that critical z-adjustment.  Obviously, it’s a money clip.  It’s light blue but the red background makes it look gray otherwise.  It’s very smooth for a 3D-printed project and amazingly so for the $699 price tag on the printer.  The small, flat piece is called a “raft” and is meant to make things stable during printing, btw.