parts is parts

Still designing/printing parts here in plastic from Autodesk Fusion 360, Cura and the Robo C2 printer. It’s amazing how long it can take sometimes to print.  This particular part printed in just over eighteen hours but an earlier (high-quality) version suggested that it would have taken slightly over four days.

I’ve been having problems with a particular spool of filament from Shaxon. Given that it’s infused with carbon fiber, it has a tendency to want to stick to itself on the spool. So I’ve lost about three print jobs so far from a variety of nonsense related to the filament snagging itself as seen here.

IMG_0190

This then results in the loss of filament to the extruder and the print job continues, going through the motions of printing but without plastic. To fix this, I’ve repurposed the base of my rock polisher to hold the spool and locking it in place with a coat hanger for the moment. When the filament tries to snag itself, the entire rig seems to work out with respect to deploying without accidents.

IMG_0195

If you’d like to see what it looks like to 3D print a part like this, here’s a link to the video I created (using that new camera from an earlier post).

Time-lapse photography of printed part

 

Advertisements

time-lapse photograpy for the robo c2

I’ve upgraded the Robo C2 printer with a nifty Raspberry Pi NoIR camera so that it can take photos, stream video and do time-lapse photography of print jobs. It seems to work great so far and I look forward to putting it through its paces.

And to make this easier for others, I’ve created a documentation repository with step-by-step instructions for anyone else who wants to modify their original printer to do this, too.

Okay, so technically the printer had a glitch 1/3 of the way into printing this (huge) coin example, so I aborted as it started to go funky at some point… which you can’t tell here, tbh.

When printed part becomes modern art

wizarding money

Apologies for the lull in blogging but I’ve been fussing with Autodesk Fusion 360 lately. The current design in 3D printing would be an authentic-looking Knut from the Harry Potter film series.

coins

So for the first coin, I thought I’d try the copper/bronze-looking one since I have some copper-infused PLA filament, some copper-infused artist liquid-stuff and plenty of pennies for electolysis at the end.

I managed to do the front side with a convincing Tratello font for the text and a complete rendering of the details. I will attempt to do a photos->mesh conversion for a better face, however.

Rafting

A raft on the part’s bottom is often necessary so that the part will adhere nicely to the workspace. Unfortunately, that tends to mar up one side of a coin so that approach doesn’t work here. I’ll then want to slice the coin into front/reverse and print both halves.

Weighting

The standard weight of a plastic coin wouldn’t feel right in your hand so the strategy would be to put something inside of two halves to make it seem realistic.

Post-processing

After the actual print, everything you do to make it nice is called post-processing. In this case, this might include assembling the two halves of the coin with glue of some kind, sanding, tumbling in a magnetic rock tumbler device with copper-plated media for a few days, brushed-in application of a copper-infused liquid for touch-ups and finally, wiring and dropping each into an electrolysis chamber so that ionic copper may bind to the outer surface.

Progress

So far, I’ve got one half of the Knut designed and made two test prints. The inside space perfectly matches a penny (which adds weight to the coin and helps to speed up the print time). The filament produces a metallic matte finish and doesn’t appear to have the tell-tale lines you normally might see in a printed part.

The bad news is that my 0.4mm extruder nozzle is too big for this job. I need a tiny opening to print at a higher resolution. So I’ll be ordering some smaller nozzles like this 0.15mm version.

pointOneFive

I have a spare power supply from a computer as well as a recycled hard disk. I’ll remove the top from the disk and then glue some very strong magnets around the top perimeter in alternating orientations every 60°. I’ll need to use my existing rubber drum from a rock tumbler kit for the media and parts.

As for the media, this will be a combination of penny-magnet-penny glued sandwiches plus a collection of copper-clad screws (over steel). This then makes everything inside want to give up copper in the millions of collisions with the copper-infused plastic parts, as influenced by the external rotating magnetic field. After a couple of days, the coins should have a healthy amount of superficial copper added plus a polishing of the printed detail.